Moments of characteristic polynomials for compact symmetric spaces and Jack polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moments of characteristic polynomials for compact symmetric spaces and Jack polynomials

We express the averages of products of characteristic polynomials for random matrix ensembles associated with compact symmetric spaces in terms of Jack polynomials or Heckman and Opdam’s Jacobi polynomials depending on the root system of the space. We also give explicit expressions for the asymptotic behavior of these averages in the limit as the matrix size goes to infinity. MSC-class: primary...

متن کامل

Symmetric Jack Polynomials from Non–symmetric Theory

In (1.2) mκ(z) is the monomial symmetric function in the variables z1, . . . , zN , and the sum is over all partitions μ which have the same modulus as κ but are smaller in dominance ordering. The polynomials Pκ possess a host of special properties, and in fact form the natural basis for a class of symmetric multivariable orthogonal polynomials generalizing the classical orthogonal polynomials ...

متن کامل

An Identity of Jack Polynomials

In this work we give an alterative proof of one of basic properties of zonal polynomials and generalised it for Jack polynomials

متن کامل

Non{symmetric Jack Polynomials and Integral Kernels

We investigate some properties of non-symmetric Jack, Hermite and Laguerre polynomials which occur as the polynomial part of the eigenfunctions for certain Calogero-Sutherland models with exchange terms. For the non-symmetric Jack polynomials, the constant term normalization N is evaluated using recurrence relations, and N is related to the norm for the non-symmetric analogue of the power-sum i...

متن کامل

Symmetric and Antisymmetric Vector-valued Jack Polynomials

Polynomials with values in an irreducible module of the symmetric group can be given the structure of a module for the rational Cherednik algebra, called a standard module. This algebra has one free parameter and is generated by differential-difference (“Dunkl”) operators, multiplication by coordinate functions and the group algebra. By specializing Griffeth’s (arχiv:0707.0251) results for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2007

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/40/45/006